

Electricity Market Structure, Wind Penetration and Information Aggregation

Chiara Lo Prete Associate Professor of Energy Economics

February 3, 2022

• Energy is bought and sold in most U.S. ISOs through a two-settlement system

- Wind penetration brings challenges for this market structure because dayahead (DA) wind output is uncertain, and **non-wind units take time to adjust**
- Forecast errors should be corrected as soon as possible to minimize the cost of rescheduling units

What happens after the DA market, if there is new information about wind?

- Intraday commitment processes to facilitate rescheduling in advance of real time → advisory prices
- Central forecasting service by ISOs

Source: Own elaboration based on data from ISO New England, 2017

An alternate approach: sequential re-trading markets

Hour of energy delivery during day t

John and Willie Leone Family Department of Energy and Mineral Engineering Do wind farms adjust their forward positions in the Iberian intraday markets

An alternate approach: sequential re-trading markets

Hour of energy delivery during day t

Which approach is more efficient?

- We use **optimization methods** and **experimental economics** to compare two designs:
 - \checkmark A two-settlement system with central forecasting service (2S)
 - ✓ A multi-settlement system with sequential intraday markets (MS)

Focus here is on the optimization models

- Unit commitment and dispatch decisions made by the ISO, not bidding decisions
- Models are run for 24h on representative wind days, and co-optimize energy and reserves
- MS includes 4 intraday stages and physical constraints
- Wind production forecasts for individual farms are from ISO New England

- MS is more likely to yield *higher* annual uplift than 2S*
 - ✓ MS better than 2S when DA forecasts > ID forecasts > RT output
 - Inaccurate ID forecasts (e.g., when DA forecasts > ID forecasts < RT output, and RT output > DA forecast) lead to inefficient commitment decisions
 - ✓ Co-optimization of energy and reserves → peaking units require uplift when cheaper baseload units substitute between energy and reserves, and set the energy price → more frequent outcome in MS as there are more stages
 - ✓ A unit may also require more uplift if settlement occurs at ID prices < RT prices that would be received in 2S</p>

*Hohl, Lo Prete, Radhakrishnan and Webster. "Comparing two-settlement and multi-settlement market designs for wind integration into the NPCC electric power system". *Working Paper*.

Thank You!

Chiara Lo Prete

Tony Kwasnica

Mort Webster

This research is supported by the Alfred P. Sloan Foundation and ISO New England.

Cody Hohl, Feng Zhu, Jiaxing Wu, and Ashish Radhakrishnan have provided excellent research assistance.

