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Sensor performance and calibration evaluation 

using reference monitor collocations 
 

The Breathe London project carried out hundreds of collocations at regulatory monitoring sites and in the 

field at Breathe London sensor locations to calibrate sensors and assess sensor performance. In this 

report, we use collocations conducted in 2018 and 2019 at three reference-grade monitoring stations in 

Greater London to characterize the out-of-box (uncalibrated) uncertainty of our AQMesh instruments as 

compared to ratified reference measurements. We then compare the uncalibrated performance of the 

sensors to measurements calibrated using a conventional calibration approach (collocation linear 

regression calibration) and a novel approach (cloud-based network calibration method, described in 

Appendix 2C). We also use the reference collocation dataset to characterize longer-term uncertainties in 

NO2 sensor performance. Lastly, we discuss the effect of reference data ratification procedures on 

calibration results. 

 

The results presented in this report are unique to the sensors for the specific pollutants that we analyze. 

We focus mainly on NO2 and PM2.5 which are the two publicly available datasets on the Breathe London 

website1. In the final section of this report we provide supplemental figures for NO and PM10 uncertainty 

results, the two additional pollutants with extensive reference collocation data available. 

 

Key Findings 

• Multiple calibration approaches are effective in reducing the error of sensor measurements, but 

the robustness of applied calibrations over time is compromised by long-term variations in sensor 

bias 

• Maintaining repeat and/or continuous collocations with reference sites for the duration of the 

campaign is critical to characterizing and mitigating long-term sensor performance issues. 

 

Report Sections 

1. Collocations and calibration methods applied 

2. Uncalibrated sensor performance 

3. Physical collocation calibration evaluation 

4. Cloud-based network calibration evaluation 

5. Comparison of calibration approaches 

6. Transfer standard (“gold pod”) calibration uncertainty 

7. Effect of reference data ratification on calibration results 

8. Supplemental figures 

 
1 Note: Analysis results throughout this report for PM2.5 and PM10 measurements are obtained using a filtered dataset that excludes hours with 

low visibility (< 10 km) and/or high relative humidity (> 90%). These high humidity/low visibility conditions appeared to correspond with a 
divergence in AQMesh accuracy compared to reference instruments. Including these periods may lead to increased uncertainty estimates of 
performance during collocations. 

https://www.edf.org/sites/default/files/documents/Breathe%20London-Cambridge-Network%20Calibration%20Method.pdf
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1. Collocations and calibration methods applied 

 

The collocation operational procedures for the Breathe London project are described in the QAQC 

manual (Appendix 2A). In this report, we evaluate each physical collocation of a sensor pod with a 

reference instrument by analyzing each pair of collocation timeseries with three aims: (1) to characterize 

the uncertainty of uncalibrated sensor measurements compared to the reference instrument; (2) to 

derive a manual calibration factor for the collocated sensor so that its measurements most closely agree 

with the reference instrument during the collocation period; and (3) to characterize the uncertainty of 

sensor measurements after application of the manual calibration and an independently derived cloud-

based calibration algorithm developed by the University of Cambridge (see Appendix 2C). Below, we 

describe the collocation analysis process and provide a visual example.  

 

For each collocation, we compare hourly average 

pollutant concentration data from our AQMesh pods to 

corresponding ratified measurements from the 

collocated reference instrument. The duration of 

collocations is shown in the left panel of Figure 2, with 

the typical collocation lasting between 7-14 days2. We 

calculate a suite of statistics for the collocation 

timeseries including correlation between the two sets 

of measurements (R2), mean bias of the AQMesh sensor 

measurements, and two estimates of timeseries error 

including root mean square error (RMSE) and mean 

absolute error (MAE). We calculate the bias and error 

associated with the raw sensor measurements, as well 

as measurements calibrated using two distinct 

methods: collocation linear regression calibration and 

cloud-based network calibration (described in Appendix 

2C). 

 

Figure 1 (right) shows an example analysis result from a 

typical reference site collocation. The scatter plot (top 

panel) shows the linear regression calibration result 

(blue line) and the cloud-based network calibration 

result (green line). The three following graphs show the 

timeseries of reference measurements (black line) 

compared to uncalibrated sensor measurements, linear 

regression calibrated sensor measurements, and cloud-

based network calibrated sensor measurements 

 
2 During the beginning of the Breathe London Project, a series of pre-deployment collocations were conducted that lasted as short as 1-3 days. 
Subsequent rounds of collocations aimed for a 1-2 week duration. 

Figure 1 – Example NO2 collocation analysis 
result for Pod 2028 at IS2 (Holloway Road) 

reference site in early 2019 

https://www.edf.org/sites/default/files/documents/Breathe%20London-Sensor%20Network%20QAQC%20Manual_0.pdf
https://www.edf.org/sites/default/files/documents/Breathe%20London-Cambridge-Network%20Calibration%20Method.pdf
https://www.edf.org/sites/default/files/documents/Breathe%20London-Cambridge-Network%20Calibration%20Method.pdf
https://www.edf.org/sites/default/files/documents/Breathe%20London-Cambridge-Network%20Calibration%20Method.pdf


3 
 

respectively. We analyze the bias and error of these different timeseries compared to ratified reference 

data to estimate the measurement error associated with the raw and calibrated data sets. In the 

illustrative Figure 1, we apply the linear regression calibration to the time-series used to derive the 

calibration gain and offset. Because this regression-based approach is designed to minimize the residuals 

between the reference and test data, the results are not necessarily indicative of the performance of the 

linear calibration method to other time periods. Consequently, we also evaluate the performance of the 

linear calibration method using other time periods than the one used to derive the manual calibration 

factors.  

 

2. Uncalibrated sensor performance 

 

The Breathe London project determined that calibration was an essential part of the QAQC process, due 

to the substantial uncertainty of uncalibrated pod measurements. In this section, we characterize the 

performance of hourly-average uncalibrated “out-of-box” pod measurements. Figure 2 shows the 

distribution of analysis results of all short-term (<21 days) reference site collocations: n=66 total (n=44 

unique sensors and 22 repeats) for NO2 and n=23 total (n=19 unique sensors and 4 repeats) for PM2.5. 

Figure 1 shows an example of an individual collocation analysis result. Note that our QAQC procedure 

would exclude poor calibration results based on statistical criteria for each calibration method (Appendix 

2A), so this is not a reflection of the quality of our QAQC’d data, but rather what sensor performance 

would have been if we had not calibrated the network or redacted any data. 

 

 

 

 

 

 

 

 

 

 

 

https://www.edf.org/sites/default/files/documents/Breathe%20London-Sensor%20Network%20QAQC%20Manual_0.pdf
https://www.edf.org/sites/default/files/documents/Breathe%20London-Sensor%20Network%20QAQC%20Manual_0.pdf
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Figure 2 – Distribution of uncalibrated collocation statistics, NO2 (top) and PM2.5 (bottom), for all short-term (<21 

days) ratified reference site collocations during Breathe London project. The color scale indicates the start date of 

each collocation period.  

 

Key Points 

 

• The median R2 values for NO2 and PM2.5 are 0.88 and 0.81 respectively. These relatively high R2 

values suggest that the sensor response exhibits good linearity over a range of concentrations 

and supports the use of a linear calibration approach. 

• For both pollutants, the median normalized RMSE of pre-scaled measurements is on the order of 

40%. This means that during an average collocation, the uncalibrated AQMesh sensor 

measurement error was about 40% of the mean air pollutant concentration during that 

collocation. 

• The distributions of collocation bias are centered on -5.7 and -1.3 for NO2 and PM2.5 respectively, 

suggesting that there is an overall low bias in the uncalibrated AQMesh sensors for both 

pollutants that would be reflected in estimates of uncalibrated network mean concentrations. 

• Mean bias results for individual collocations range from -14.6 to +7.7 for NO2 and -4.6 to +10.5 

for PM2.5. The observed range in mean bias across the uncalibrated network would effectively 
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prevent the identification of spatial differences in pollution levels smaller than 10-15 ppb NO2 and 

5-10 µg/m3 PM2.5. 

• For NO2, there is a clear temporal trend in the bias of individual collocations. Sensor 

measurements early in the campaign (Fall 2018 - dark purple) tend to have a low bias against 

reference measurements, and in Summer 2019 (orange) have a high bias. The seasonal variation 

in bias likely reflects the effects of ozone cross-interference. This time-dependent bias effect 

broadens the overall range of NO2 bias in pre-scaled data and also has implications for calibrated 

measurements which we discuss further below. 

3. Physical collocation calibration evaluation 

 

In this section, we evaluate the measurement uncertainty of sensors when they are calibrated with a 

linear regression from a reference site collocation (Figure 1, blue lines).  

 

3.1 Short-term sensor performance during reference site calibration 

 

We first analyze sensor performance during short-term reference site collocations when sensors are 

calibrated using the linear regression result from the same collocation. Our results in Section 3.2 (below) 

will demonstrate that the measurement error of pods during “calibration” periods (i.e. when we calculate 

error from the same reference data that the pod was calibrated against) is not representative of the 

realistic applied or long-term measurement uncertainty of the sensors. However, these calibration period 

error results are still useful as an indication of the short-term accuracy and precision of the sensor under 

ideal calibrated conditions with bias eliminated. 

 

Figure 3 shows that calibrated NO2 and PM2.5 sensors have a median normalized RMSE of 15% and 33% 

respectively during the collocation periods that calibrations were derived from. Sensor bias during these 

periods is essentially eliminated by the least squares regression used to calibrate the sensors directly 

against the reference measurements. The results demonstrate the short-term accuracy of the sensors 

during collocation calibration periods.  
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3.2 Long-term performance of calibrated sensors 

 

During the project, physical collocation calibrations at reference sites were typically 2 weeks or less 

(Figure 2, left panel). The resulting calibration result was used to scale pod measurements for an 

extended period while the pod was subsequently deployed in the field. Therefore, it is necessary to 

understand how robust the calibration result is from a short-term collocation when it is applied to a long-

term timeseries. We explore the long-term uncertainties of collocation-calibrated sensors below.  

 

We use two different datasets to study how robust a physical calibration is when applied to a longer 

timeseries: 

1. Long-term collocations – Where a sensor has been collocated for an extended time period (>6 

weeks) at a reference monitor 

2. Serial collocations – Where the same sensor has been collocated during multiple time periods 

 

Due to limited data availability for long-term and serial PM2.5 collocations3, the following results are for 

NO2 sensors only. In Section 8 we present supplemental results for NO and PM10.  

 

 

 

 

 

 

 
3 Of the three regulatory monitoring stations (CD1, IS2, and SK6) where BL collocations were performed, only one (CD1) measured PM2.5. 

Figure 3 – Linear regression calibrated error results during reference site collocation calibration periods; NO2 (left) and 
PM2.5 (right). Statistics shown are median (min, max). n = 54 collocations, 39 unique sensors for NO2 and 18 
collocations, 16 unique sensors for PM2.5. Collocations shown here pass QAQC criteria (Appendix 2A) of R2 > 0.7 and 
nRMSE < 0.5 for collocation calibrations. 

 

https://www.edf.org/sites/default/files/documents/Breathe%20London-Sensor%20Network%20QAQC%20Manual_0.pdf
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3.2.1 Sensor performance evaluation during long-term reference site collocations 

 

Methods 

We test the long-term performance of NO2 sensor measurements using 4 long-term collocations at 

reference sites. Rather than calibrating the pods using the entire collocation timeseries, we simulate the 

calibration we would have obtained from a short-term collocation (Section 3.1) by treating the first two 

weeks of the long-term collocation as the “calibration” period. Like in the project dataset, this calibration 

is then applied to the rest of that pod’s timeseries of measurements. We then use all non-calibration 

“testing” periods (that is, all bi-weekly periods except for the initial period that was used to calibrate the 

timeseries) to calculate the normalized RMSE and mean bias of AQMesh measurements compared to the 

collocated reference instrument (i.e. for each bi-weekly period, nRMSE is calculated from hourly AQMesh 

measurements vs. hourly reference measurements). 

 

Results 

Table 1 summarizes the measurement bias and error of AQMesh NO2 measurements during all the long-

term collocations. The timeseries of bi-weekly error and bias results are shown in Figures 4 and 5. The 

summary table and timeseries plots show that when an initial reference site calibration is applied to long-

term sensor measurements, the error during bi-weekly “testing” periods is typically significantly higher 

than during the initial calibration period, with the median long-term nRMSE during non-calibration 

periods ranging from 15.7% to 42.4% (Table 1). Additionally, each of the sensors had a high bias during 

the long-term collocation when compared to the reference, with median “testing period” biases ranging 

from +2.0 ppb to + 3.9 ppb. Notably, biases during individual bi-weekly testing periods reached even 

higher (+5 to 7 ppb).  

 

Figures 4 and 5 show that long-term trends in bias and error appear to mirror one another (i.e. error 

fluctuations may be driven largely by changes in bias), and long-term bias trends appear to be consistent 

across sensors (Figure 5), highlighting a time-dependent oscillation in sensor bias which is believed to be 

associated with ozone cross-interference for our batch of NO2 sensors. The seasonal bias in Figure 5 

shows an apparent increase into Spring and Summer and a reduction during the winter.  

 

Table 1 and Figure 4 emphasize that even with a robust initial reference site collocation, long-term 

uncertainties in sensor performance can lead to significantly expanded error (>3× the initial calibration 

period nRMSE during the worst-case testing periods). 
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Table 1: Long-term bias and normalized RMSE of AQMesh NO2 measurements during calibration and long-term 

testing periods. Note that Pod 83, which exhibits the highest nRMSE during testing and calibration periods, had 

consistently lower R2 values than other pods (see Figures 4 and 5) indicating suspect sensor performance. 

 

 Long-term “testing” period Initial “calibration” period 

 Number of unique 

bi-weekly “testing” 

periods 

nRMSE  

median (min, max)  

Mean bias (ppb) 

median (min, 

max) 

nRMSE Mean bias 

(ppb) 

Pod 17 at 

IS2 

25 21.4% (12.7%, 

54.5%) 

2.0 (0.9, 5.5) 12.4% 0.0 

Pod 79 at 

SK6 

8 19.6% (14.1%, 

55.3%) 

2.9 (-0.8, 4.6) 17.5% 0.0 

Pod 83 at 

SK6 

25 42.4% (21.5%, 

103.1%) 

3.0 (-2.2, 7.3) 29.6% 0.0 

Pod 99 at 

CD1 

8 15.7% (10.2%, 

40.4%) 

3.9 (1.7, 7.1) 10.2% 0.0 

 

 

 

 
Figure 4 – Bi-weekly nRMSE (normalized RMSE) of AQMesh NO2 measurements compared to reference 

measurements, for four long-term collocations at three different reference monitors. Reference data is ratified 

through Feb 2020.  Bi-weekly R2 of measurements symbolized by color. Each AQMesh sensor is calibrated using 

data from the first bi-weekly collocation period, as indicated by the hollow circle. Note that the y-axis scale for Pod 

83245 at SK6 (third panel from top) differs from other panels. 
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Figure 5 – Bi-weekly bias of AQMesh NO2 measurements (ppb) compared to reference measurements, for four long-

term collocations at three different reference monitors. Reference data is ratified through Feb 2020. Bi-weekly R2 of 

measurements symbolized by color. Each AQMesh sensor is calibrated using data from the first bi-weekly 

collocation period, as indicated by the hollow circle. Note that the y-axis scale for Pod 83245 at SK6 (third panel 

from top) differs from other panels. 

3.2.2 Long-term evaluation of sensor calibration based on serial collocations 

 

Methods 

We use sensors (n=10) that have been collocated two or more times at a reference site to analyze the 

robustness of an initial NO2 collocation calibration when applied to subsequent collocation periods. The 

median time gap between the initial and repeat collocations is 18 weeks, with a minimum gap of 1 week 

and a maximum gap of 47 weeks. 

To study the uncertainty of calibrated data during the “repeat” collocations, we “anchor” a sensor to its 

first calibration and scale the data of subsequent collocation periods using this original calibration. We 

examine the bias and error statistics to see how the uncertainty and error during the subsequent periods 

vary compared to the “anchor” period where the calibration was derived from. Figure 6 shows an 

example, where the top timeseries is the calibrated timeseries during the collocation period during which 

the calibration was derived and the second and third panels are subsequent collocations with pod data 

scaled using the calibration from the first. We exclude n=3 subsequent collocations with R2 values <0.5 

between the candidate and reference values, which would indicate sensor malfunction. 
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Figure 6 – Pod 2027150 serial collocation timeseries for NO2 (ppb). The blue line is the AQMesh timeseries and the 

black line is the reference site timeseries. In each of three periods, the blue line is scaled using the linear regression 

calibration result from the first (top) collocation. Note that x- and y-axis scales are different for each panel. 

Results 

Table 2 and Figure 7 show that when the calibration from the first collocation is used to scale AQMesh 

measurements for subsequent collocations, the error statistics increase substantially compared to the 

initial collocation calibration period. This finding agrees with the results in Table 1 where “testing periods” 

during long-term collocations had higher median nRMSE than calibration periods. We find that the 

median normalized RMSE among the 26 subsequent “testing” collocations is 31.3%, which is more than 

double the median RMSE during the initial “calibration” period for the 10 unique sensors of 13.5%. Also 

similar to the bias trends in long-term collocations, Table 2 shows that there is a +3.7 ppb median bias in 

the 23 subsequent collocations, showing a systematic positive bias in this group of sensors. This case 

study suggests that changes in pod performance may substantially increase sensor bias and error 

compared to the time period when the calibration was derived.  

 

Table 2: Bias and normalized RMSE of AQMesh NO2 measurements during serial collocations. All “testing” 

collocations are subsequent collocations that are calibrated by the first available collocation for the specific sensor. 

 

  Subsequent “testing” collocations Initial “calibration” period 

Number of 

unique sensors 

and initial 

sensor 

calibration 

periods 

Number of 

subsequent 

collocations for 

n=10 unique 

sensors 

nRMSE  

median (min, 

max)  

Mean bias 

(ppb) 

median (min, 

max) 

nRMSE 

median 

(min, max) 

Mean bias4 

(ppb) 

median (min, 

max) 

10 23 31.3% (11.2%, 

78.9%) 

3.7 (-2.9, 10.2) 13.5% 

(10.0%, 

19.0%) 

0.0 (-0.3, 2.0) 

 
4 We note that while a linear regression calibration by design eliminates all bias during the calibration period, our results include small biases 
during the initial collocation periods because we calibrate using a subset of the initial period with outliers removed. 
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Figure 7 – Normalized root mean square error (nRMSE) and bias of n=23 repeat NO2 collocations, when calibrated 

using result from first collocation for each of n=10 unique sensors.  

4. Cloud-based network calibration evaluation 

 

The cloud-based network calibration method is a novel approach developed and applied by the University 

of Cambridge project team that remotely derives calibrations for the entire sensor network without the 

need for extensive collocation campaigns. The methodology is detailed in Appendix 2C. Cloud-based 

calibrations for Breathe London sensors were derived from several months of data during 2019: May – 

Dec 2019 for NO2 and Apr – June 2019 for PM2.5. 

 

The results in Section 3 showed that our NO2 instruments can develop significant biases on a timescale of 

a few months or less after being calibrated (see Figure 5). Therefore, it is important to emphasize that our 

estimates below for the uncertainty of network-calibrated sensors reflect calibration method uncertainty 

and long-term uncertainty in sensor performance.  

 

Methods 

We evaluate the performance of the network-based calibration method based on the distribution and 

summary statistics of error results from the entire batch of short-term (< 3 weeks) reference site 

collocations. We include only collocations that meet the network method QAQC criteria (Appendix 2A) of 

covariance > 0.5. We exclude n=3 collocations with R2 values <0.5 between the candidate and reference 

values, which would indicate sensor malfunction.  

 

 

 

 

 

https://www.edf.org/sites/default/files/documents/Breathe%20London-Cambridge-Network%20Calibration%20Method.pdf
https://www.edf.org/sites/default/files/documents/Breathe%20London-Sensor%20Network%20QAQC%20Manual_0.pdf


12 
 

Results 

Figure 8 and 9 show the distributions of bias and error collocation statistics for NO2 and PM2.5 

measurements respectively when calibrated with the network method. 

 

 
 

 
 

For NO2, the median normalized RMSE of n=46 collocations was 27%, and the median bias across all 

collocations was +0.1 ppb. During individual collocations, network calibrated sensors still exhibited a large 

range of biases from   -12 to +11 ppb. However, part of this spread in individual collocation bias is likely 

driven by the time-varying bias effects of ozone cross-interference on our NO2 sensors. The histogram of 

NO2 collocation bias results (Figure 8, left) shows that in Fall of 2018 (dark blue), the network-calibrated 

AQMesh measurements are biased systematically low, in Spring 2019 (blue-green) they are centered near 

0 but still display a substantial range of individual collocation biases, and in Summer 2019 (green-yellow), 

the few collocations are biased quite high. This oscillation in the bias and error of network-calibrated 

sensors mirrors the seasonal patterns of bias we have shown in prescaled and collocation-calibrated data 

in prior sections. 

 

Figure 8 – NO2 network-method calibrated error and bias results from during reference site collocation periods; mean 
bias (left) and normalized root mean square error (right). Summary statistics shown are median (min, max). n = 46 
collocations, 28 unique sensors. Collocations shown here pass QAQC criteria (Appendix 2A) of network calibration 
covariance > 0.5. Any collocations with R2 < 0.5 were eliminated as suspect sensor performance. 

 

https://www.edf.org/sites/default/files/documents/Breathe%20London-Sensor%20Network%20QAQC%20Manual_0.pdf
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For PM2.5, the median bias from n=21 collocations was -0.2, with individual collocation biases ranging from 

-3.0 to 3.4 μg/m3. The median normalized RMSE was 37%, with nRMSE in individual collocations ranging 

from 12% to 83%.   

5. Comparison of calibration approaches 

 

A direct comparison of the effectiveness of the calibration methods applied during the Breathe London 

project is challenging due to limitations of our data. Our analyses above have shown that long-term 

fluctuation in NO2 sensor bias introduces significant uncertainty into measurements, regardless of the 

calibration method. This temporal component of sensor bias and error complicates comparisons between 

the cloud-based network calibration method and physical collocation calibration method, especially 

because these methods derive calibrations from different time windows. Here, we present our best effort 

to analyze the limited available data to develop a reasonably indicative comparison between these two 

calibration approaches. 

 

Methods 

To compare the methods, we analyze the results of “serial” NO2 collocations (Section 3) compared with 

network-calibrated NO2 data and pre-scaled NO2 data. We identify a subset of n=18 NO2 collocations 

where a valid calibration is available from a previous physical collocation calibration for that sensor. This 

class of data, the “repeat physical” collocation result, reflects the uncertainty of data scaled by a linear 

regression result from a past physical collocation. We compare the error results of this group to the same 

collocations calibrated with the network-based approach as well as to the uncalibrated, pre-scaled data. 

Figure 9 – PM2.5 network-method calibrated error and bias results during reference site collocation periods; mean 
bias (left) and normalized root mean square error (right). Summary statistics shown are median (min, max). n = 21 
collocations, 18 unique sensors. Collocations shown here pass QAQC criteria (Appendix 2A) of network calibration 
covariance > 0.5. Any collocations with R2 < 0.5 were eliminated as suspect sensor performance. 

 

https://www.edf.org/sites/default/files/documents/Breathe%20London-Sensor%20Network%20QAQC%20Manual_0.pdf
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Lastly, we include a group that is network-calibrated and ozone-corrected. This is similar to the cloud-

based network calibration group, except a first-order correction has been applied to mitigate effects of 

ozone cross-interference. We include this result to show the potential benefits of such a correction on 

error results but note that this correction has not been applied to any of the other groups. 

 

Results 

The network calibration and repeat physical calibration both improve median normalized RMSE to 27% 

across 18 collocations, compared to 34% for pre-scaled data (Figure 10 and Table 3). This subset of 

collocations has a negative bias in pre-scaled data, consistent with the larger set of pre-scaled data 

(Figure 2). The non-ozone corrected network-calibrated sensors have a positive median bias of 3.1 ppb.  

Similarly, sensors calibrated using a previous physical collocation result also have a median bias of 2.9 

ppb. With implementation of the ozone correction, which we only have available for network-scaled data, 

the median bias of the group of collocations shifts to -0.7, nearly centering the distribution. Sensors 

calibrated using both methods still display a wide range of individual pod biases. This is expected based 

on long-term variations in sensor bias shown in Figure 5 for the physical collocation method and Figure 8 

for the network calibration method. 

 

 
 

Figure 10 – Collocation error distribution density for two calibration methods: network (cloud-based network 

calibration method), physical (calibrated using physical collocation linear regression result from previous sensor 

collocation period at reference), and pre-scaled data (uncalibrated sensor measurements). N=18 collocations. The 

number of collocations is reduced compared to other figures because collocations must meet network method and 

physical collocation criteria (R2>0.7, nRMSE < 0.5, and covariance >0.5), as well as have a previous valid physical 

collocation result to apply for “repeat physical” scaling. Units: ppb. Statistics evaluated from left to right are mean 

bias (ppb) and normalized root mean square error. 
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Table 3 - Collocation error summary statistics by calibration method for n=18 collocations. The number of 

collocations is reduced compared to other figures because collocations must meet network method and physical 

collocation criteria (R2>0.7, nRMSE < 0.5, and covariance >0.5), as well as have a previous valid physical collocation 

result to apply for “repeat physical” scaling. Values shown are: median (min, max). 

 

Calibration method Normalized RMSE Bias (ppb) 

Prescaled 34% (14%, 48%) -4.7 (-11.3, 5.2) 

Cloud-based network calibration 27% (13%, 83%) 3.1 (-6.7, 11.21) 

Cloud-based network calibration (with ozone 

correction) 

26% (15%, 81%) -0.7 (-9.2, 7.9) 

Physical calibration from previous collocation 27% (11%, 72%) 2.9 (-2.9, 9.1) 

 

6. Transfer standard (“gold pod”) calibration uncertainty 

 

In the context of the Breathe London project, which expanded the spatial insight of the current air quality 

network by monitoring in about a hundred new locations, it was not logistically possible for most pods to 

be collocated at a reference site, especially if they needed to be calibrated after initial deployment 

(reasons could include a sensor replacement or rebasing). 

 

Therefore, an alternative calibration approach was undertaken, called the “gold pod” approach. 

Described in more detail in Appendix 2A, the gold pod approach uses a transfer standard method, first 

calibrating a gold sensor by means of a reference site collocation before moving that calibrated sensor to 

calibrate candidate sensors at various BL pod sites. 

 

Compared to a reference site collocation calibration, there are two primary additional uncertainties 

related to the transfer standard approach: 

1. Transfer uncertainty – how much additional uncertainty is introduced simply from the “transfer” 

of calibration from reference site -> gold pod -> candidate pod (rather than reference site -> 

candidate pod as analyzed above)  

2. Temporal and spatial robustness – How much uncertainty is introduced by the passing of time 

and the change in environmental conditions between the gold pod “gilding” at the reference site 

and the calibration of the candidate pod in the field?  

 

6.1 Transfer uncertainty 

 

Methods 

During the Breathe London project, there are 29 periods where two or more AQMesh sensors are 

collocated at the same reference monitor. We analyze the “transfer uncertainty” of the gold pod 

calibration method for NO2 using these periods with multiple simultaneously collocated pods (Figure 11). 

We randomly designate one pod (n=1) as the “gold pod,” and perform a linear regression calibration 

https://www.edf.org/sites/default/files/documents/Breathe%20London-Sensor%20Network%20QAQC%20Manual_0.pdf
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against the reference measurements. This pod, in effect, becomes the calibrated gold pod. Normally the 

gold pod would be redeployed in collocations with pods in the field to calibrate candidates. Here, we 

treat the remaining collocated pods in the group as “candidate pods” (n=1-4 candidate pods, depending 

on the group). Using the exact same time period, we calibrate the candidate pods using the calibrated 

gold pod (this was calibrated using the reference monitor directly). We compare the bias and error 

resulting from the “transfer” of calibration through the gold pod compared to direct reference monitor 

calibration (Figures 12 and 13). Because we are using identical time periods and locations, the resulting 

changes in error and bias results should reflect the direct effect of the “transfer uncertainty.”  

 

   
Figure 11 – Transfer uncertainty experiment schematic. Left image shows transfer calibration, right shows 

reference calibration. Candidate results from each method are analyzed against reference measurements to assess 

the additional uncertainty related to transfer of calibration 

 
Figure 12 – Example NO2 (ppb) timeseries of reference monitor (“Reference”), reference-calibrated gold pod 

(“Gold”), reference-calibrated candidate pod (“Candidate Ref. Scaled”), and gold pod-calibrated candidate pod 

(“Candidate Gold Scaled”). Comparison of the two latter results allows direct comparison of reference site 

calibration vs. transfer standard calibration.  
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Results 

 
 

Figure 13 – NO2 bias (left) and normalized root mean square error (right) results when sensors are calibrated with a 

gold pod that was calibrated by the reference monitor (blue), compared with direct calibration using the reference 

monitor, for n=60 trials with n=29 unique sensors during n=29 group reference site collocations. 

Figure 13 shows the distribution of error and bias results from the experiment. The results suggest that 

the uncertainty introduced by the “transfer” process of gold-pod calibration is negligible when the time 

period, site, and conditions are identical. The median NO2 RMSE result of candidate pods is 3.3 ppb using 

the two-step transfer, compared to 3.2 ppb using direct calibration to the reference measurements, only 

a 3% increase. The median bias remains 0 using the gold pod method, with only a few directional biases 

introduced in individual sensors that are negligible in magnitude (Figure 13, left panel). The median R2 

value between gold pods and candidate sensors is 0.95, compared to 0.86 between reference 

measurements and candidate sensors. 

 

Performing the same experiment for PM2.5 yields a similar result. The median PM2.5 RMSE result of 

candidate pods is 2.6 µg/m3 using the two-step transfer, compared to 2.5 µg/m3 using direct calibration 

to the reference measurements, only a 4% increase. The median bias remains 0 using the gold pod 

method.  The median R2 value between gold pods and candidate sensors is 0.97, compared to 0.84 

between reference measurements and candidate sensors, indicating highly reproducible performance 

between sensors despite poorer agreement to reference measurements. 

 

The results suggest that within our batch of AQMesh sensors, the responses and error mechanisms 

relative to the reference instrument are highly reproducible between sensors. If these results apply 

broadly, they point to the efficacy of the gold pod method in faithfully reproducing the calibration of the 

reference site with minimal additional uncertainty.  
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6.2 Temporal and spatial robustness of gold pod calibrations 

 

The experiment above showed that the process of a two-step calibration from reference -> gold pod -> 

candidate pod does not introduce significant uncertainty for NO2 and PM2.5 sensors when both calibration 

steps (gold pod “gilding” and candidate pod calibration against gold pod) are performed on the exact 

same dataset (same time, conditions, location). However, gold pod collocation calibrations, by design, 

take place in the field at the candidate pod site at a different time and potentially differing conditions 

than when the gilding occurred. Unfortunately, there is no reference instrument present to validate 

against. In this section, we attempt an estimate of the uncertainty introduced in the field by extension of 

other analyses of reference collocation results presented earlier in this report.  

 

• When AQMesh “gold pod” sensors were gilded using a first reference collocation, and then 

redeployed one or more times to a reference site, the average nRMSE increased from 13.5% 

during the initial calibration period to 31.3% during subsequent reference site redeployments, 

and the AQMesh sensors developed a systematic high bias compared to reference measurements 

(Table 2). 

o The additional error and bias that developed in these gold pods over time would be 

propagated to any candidate pod that they were scaled against 

• Our long-term collocation analysis in Table 1 and Figure 4 similarly demonstrates that calibrated 

sensors can develop biases on the order of 8ppb in short (<3-month) timescales and that error of 

calibrated pods can more than double when the initial calibration is applied to the long-term 

timeseries. 

 

These observations indicate a higher degree of uncertainty regarding the effectiveness of transfer 

standard calibration given clear issues with long-term sensor performance. The results suggest that the 

“gold pod” transfer standard calibration collocations should take place as close to gold pod “gilding” 

(calibration at reference site) as possible, and gold pods should be frequently re-gilded.  

 

These insights are specific to the technology used in this project and could change with data corrections 

that improve long-term consistency of sensor measurements and calibrations. We focus here on NO2, but 

the supplemental tables and figures in Section 8 present equivalent results for NO and PM10 and similarly 

provide evidence of expanded uncertainty during repeat and long-term application of reference 

collocation calibration results. 

7. Effect of data ratification on calibration results 

 

A logistical constraint of the Breathe London collocation calibration procedures was the ratification 

timeline of reference monitor data. There is no exact ratification schedule and timing depends on which 

reference network a monitor belongs to, but in general data ratification for the previous year is 

performed annually in the first few months of the following year (i.e. 2018 data would become ratified in 

the first few months of 2019). This meant that for the duration of the project, reference site collocations 

relied at least partly on un-ratified reference data, creating some additional uncertainty regarding the 
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robustness of calibration results. Our experience and findings here suggest that projects relying on 

reference data as a source of calibrations should consider the reference data ratification practices and 

timeline in project planning and treat calibrations from un-ratified reference data as provisional and 

subject to change.  

 

In 2020, following ratification of 2019 reference data, we analyzed the ratification-related changes in 

reference PM2.5 and NO2 data and the corresponding effects on calibration parameters obtained from 

collocations (Figures 5-7). In summary, we found that: 

 

• Ratification affected some reference NO2 measurements at CD1 much more significantly than at 

other sites (Figure 14). 

• PM2.5 ratification changes were negligible, except for redaction of some negative values (Figure 

14). 

• NO2 ratification generally improved collocation error (nRMSE) and agreement (R2) slightly. 

• Significant NO2 offset changes during ratification for select 2019 time periods changed collocation 

results drastically (Figures 14 and 15). 

• NO2 collocation calibration gain changes for most pods were relatively small (<5%) (Figure 15). 

 

 
Figure 14 – Difference timeseries of provisional – ratified reference data at three London reference sites where 

Breathe London collocations were carried out: CD1 – Swiss Cottage, IS2 – Holloway Road, and SK6 – Elephant and 

Castle. 
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Figure 15 – NO2 calibration offset and gain results, comparing provisional reference data results (red dots) with 

ratified (blue). 
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8. Supplemental figures 

 

 

 
 

 
 

Supplemental figure 1 – Distribution of uncalibrated collocation statistics, NO (top) and PM10 (bottom), for short-

term (<21 days) ratified reference site collocations during Breathe London project. The color scale indicates the 

start date of each collocation period. Note that NO RMSE (top, panel 4) is reported in absolute units (ppb), rather 

than normalized, due to low (<5 ppb) average NO concentrations during certain collocations (see panel 2 for mean 

reference concentrations). Note that we also excluded n=3 extreme outliers from NO collocations that had R2 < 0.1. 
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Supplementary table 1: Long-term bias and RMSE of AQMesh NO measurements during calibration and long-term 

testing periods. Note that Pod 83 tends to have consistently lower R2 values than other pods (see Supplemental 

figures 3 and 4) indicating suspect sensor performance. Note that we analyze absolute RMSE (ppb) here, instead of 

normalized RMSE used for other pollutants, because the normalized statistic for NO is affected by periods with low 

(<5 ppb) NO concentrations. 

 

 Long-term “testing” period Initial “calibration” period 

 Number of unique 

bi-weekly “testing” 

periods 

RMSE (ppb) 

median (min, max)  

Mean bias (ppb) 

median (min, 

max) 

RMSE (ppb) Mean bias 

(ppb) 

Pod 17 at 

IS2 

25 4.7 (2.1, 10.5) -1.7 (-5.2, 1.0) 3.0 0.0 

Pod 79 at 

SK6 

8 4.6 (3.9, 8.5) 1.4 (-1.0, 4.0) 4.1 0.0 

Pod 83 at 

SK6 

25 3.4 (1.9, 9.2) 2.1 (-3.5, 4.3) 3.5 0.0 

Pod 99 at 

CD1 

8 4.8 (2.6, 7.5) -0.2 (-1.7, 3.3) 4.2 0.0 

 

Supplemental figure 2 – Linear regression calibrated error results during reference site collocation calibration 
periods; NO (left) and PM10 (right). Statistics shown are median (min, max). n = 51 collocations, 34 unique sensors 
for NO and 35 collocations, 25 unique sensors for PM10. Collocations shown here pass QAQC criteria (Appendix 2A) 
of R2 > 0.7 and nRMSE < 0.5 for collocation calibrations. The number of PM10 collocations is significantly lower 
because many collocations do not satisfy R2 criteria (see Supplemental figure 1, right-most panel, for full 
distribution of collocation R2 results).  

 

https://www.edf.org/sites/default/files/documents/Breathe%20London-Sensor%20Network%20QAQC%20Manual_0.pdf
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Supplemental figure 3 – Bi-weekly RMSE (ppb) of AQMesh NO measurements compared to reference 

measurements, for four long-term collocations at three different reference monitors. Reference data is ratified 

through the beginning of 2020.  Bi-weekly R2 of measurements symbolized by color. Each AQMesh sensor is 

calibrated using data from the first bi-weekly collocation period, as indicated by the hollow circle. 
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Supplemental figure 4 – Bi-weekly bias of AQMesh NO measurements (ppb) compared to reference measurements, 

for four long-term collocations at three different reference monitors. Reference data is ratified through the 

beginning of 2020. Bi-weekly R2 of measurements symbolized by color. Each AQMesh sensor is calibrated using 

data from the first bi-weekly collocation period, as indicated by the hollow circle.  

 

Supplementary table 2: Long-term bias and RMSE of AQMesh PM10 measurements during calibration and long-term 

testing periods.  

 

 Long-term “testing” period Initial “calibration” period 

 Number of 

unique bi-weekly 

“testing” periods 

nRMSE 

median (min, max)  

Mean bias 

(μg/m3) 

median (min, 

max) 

nRMSE Mean bias 

(μg/m3) 

Pod 17 at 

IS2 

25 38.7% (25.7%, 

72.9%) 

3.7 (0.8, 8.6) 22.9% 0.0 

Pod 79 at 

SK6 

5 31.2% (20.5%, 

35.1%) 

2.9 (1.8, 3.9) 25.0% 0.0 

Pod 83 at 

SK6 

25 40.7% (28.6%, 

58.8%) 

-0.9 (-9.5, 3.7) 29.6% 0.0 

Pod 99 at 

CD1 

8 36.1% (28.3%, 

54.4%) 

-2.5 (-7.2, 2.7) 36.5% 0.0 
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Supplemental figure 5 – Bi-weekly nRMSE (%) of AQMesh PM10 measurements compared to reference 

measurements, for four long-term collocations at three different reference monitors. Reference data is ratified 

through the beginning of 2020.  Bi-weekly R2 of measurements symbolized by color. Each AQMesh sensor is 

calibrated using data from the first bi-weekly collocation period, as indicated by the hollow circle. 
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Supplemental figure 6 – Bi-weekly bias of AQMesh PM10 measurements (μg/m3) compared to reference 

measurements, for four long-term collocations at three different reference monitors. Reference data is ratified 

through the beginning of 2020. Bi-weekly R2 of measurements symbolized by color. Each AQMesh sensor is 

calibrated using data from the first bi-weekly collocation period, as indicated by the hollow circle.  

 

Supplemental table 3: Bias and normalized RMSE of AQMesh NO measurements during serial collocations. All 

“testing” collocations are subsequent collocations that are calibrated by the first available collocation for the specific 

sensor. 

 

  Subsequent “testing” collocations Initial “calibration” period 

Number of 

unique sensors 

and initial 

sensor 

calibration 

periods 

Number of 

subsequent 

collocations for 

n=10 unique 

sensors 

nRMSE  

median (min, 

max)  

Mean bias 

(ppb) 

median (min, 

max) 

nRMSE 

median 

(min, max) 

Mean bias 

(ppb) 

median (min, 

max) 

10 20 47.2% (16.3%, 

83.0%) 

-1.7 (-9.7, 26.7) 19.5% 

(13.0%, 

48.0%) 

-0.1 (-0.3, 0.0) 
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Supplemental figure 7 – Normalized root mean square error (nRMSE) and bias of n=20 repeat NO collocations, 

when calibrated using result from first collocation for each of n=10 unique sensors.  

 

Supplemental table 4: Bias and normalized RMSE of AQMesh PM10 measurements during serial collocations. All 

“testing” collocations are subsequent collocations that are calibrated by the first available collocation for the specific 

sensor. 

 

  Subsequent “testing” collocations Initial “calibration” period 

Number of 

unique sensors 

and initial 

sensor 

calibration 

periods 

Number of 

subsequent 

collocations for 

n=10 unique 

sensors 

nRMSE  

median (min, 

max)  

Mean bias 

(μg/m3) 

median (min, 

max) 

nRMSE 

median 

(min, max) 

Mean bias 

(μg/m3) 

median (min, 

max) 

10 14 49.6% (28.3%, 

72.1%) 

0.4 (-5.8, 10.2) 20.0% 

(14.0%, 

25.0%) 

0.2 (0.0, 0.2) 
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Supplemental figure 8 – Normalized root mean square error (nRMSE) and bias of n=14 repeat PM10 collocations, 

when calibrated using result from first collocation for each of n=10 unique sensors.  

 

 

 


